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The problem of motion and of stability of a heavy symmetric gyroscope on
gimbals has been investigated in [1-4], where the necessary and suffi-
cient conditions of stability of the stationary motion were obtained by
the second method of Liapunov., In this paper the author presents similar
results for a gyroscope on gimbals in a force field determined by a force
function V(6), where O is the rotation angle of the inmer ring (casing).
This problem has been solved in the first approximation for a gyroscope
not on gimbals and reported in [s].

Considering a symmetric gyroscope on gimbals (see figure), we shall
introduce the following symbolism: %y, Y5, z3 18 the fixed coordinate
system, x, y, z is the moving coordinate system rigidly connected with
the casing (the x-axis along the axis of the casing, the :z-axis along
the rotor’s axis); ¢ is the rotation angle of the outer ring: ¢ is the
rotation angle of the gyroscope; A4, 4, C are the moments of inertia of
the gyroscope about x-, y-, z-axes respectively; Al, Bl' Cl are the
moments of inertia of the casing about the same axes; J is the moment of
inertia of the outer ring about the vertical axis ;.

The equations of motion of our system in the Lagrange form
(A4 A)§— (A+ By—Cy) ¥?sin § cos 0+ C (¢ + $cos §) Psin § = — V' (8)
%{[(A—}-Bl) sin?f + Crcos? @ + J]p + C ((])—}—11)0059)(:050}::0 (1)

d . .
Czt—(cp—f—\pcosﬁ):O

admit the three first integrals
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[(A+ By)sin?0 + Crcos? § + J) Y2+ (A + A1) 02+ C (¢ +PcosB)2 +-2V () =h (2}
[(A+ By)sin?@ + Cycos? 0+ J] ¥ + C (¢ + P cos0) cos § = k 3)
r=q'>+\'pc056=ro (4)

The dot indicates the time derivative, prime denotes a derivative with

respect to 0. By separating the variables the solution of the probiem can
be reduced to quadratures

., la—mV(0)](e—ecos?h) — (B—brocosB)* _ f(6)

g e —ecos?0 ~ g—ecos?p’
B—brocos § . .
b= ecos’0 , ®=ro—pcosh
Here
h—C"oz _A+B1+J A+BI—CI k
C=TT A" =T ATA4A ' = Ax4 ' B=a14
C 2

b=a74 ™= 414

For a heavy gyroscope on gimbals with a vertical axis of the outer
ring (¥ = a cos @) solutions lead to hyperbolic integrals which were ob-
tained in [1].

The following special case is of interest:
V() = n/(c ~ e cos? 0); (n is a constant)

In this case the function f(f) reduces to a second degree polynomial
in a = cos 0. This polynomial differs
only by the free term from a correspond-
ing polynomial arising in the case of an
equilibrated gyroscope (V(6) = 0). In-
vestigations of the stability of station-
ary motions (vertical rotation and
regular precession) of a gyroscope can be
carried out [1] like for an equilibrated
gyroscope, by considering the roots of
the polynomial f(u). We shall investigate
the stability of the stationary motion of
a gyroscope with an arbitrary analytic
function V(0).

The regular precession of the
gyroscope

0=00. 0=0, P=9Q, r=o {5)
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occurs, according to (1), when the constants 00, ), @ satisfy the rela-
tion

(A + By — Cy) Q%sin g cos G — CaQ sin §o — V' (Bp) =0 (6)
In order to find the stability of the solutions (5) with respect to

9, é, ¢n r, we shall write down the equations of the perturbed motion by
substituting

0=0o+n, 6=F8, $=0Q4% r=o+k

The equations of the perturbed motion permit three integrals which
correspond to the integrals (2), (3), (4). These integrals can be com-
bined to form a function similar to the one shown in [2]. conditions for
sign-definiteness of this function with respect to all the variables 7,
£, &, &; reduce to one inequality

(A + By — C1) Q%c0820) — CQ cos Go— V" (00) <O (7

which is the.sngficient condition of stability of the motion (5) with re-
spect to 0, 6, ¥, ¥, r. In the case when O, # 0, this condition could be
expressed in the form

{A+ By — Cy) Q3sin® §o— V' (Bo)eot 8, + V" (85) > 0 @)

by using Equation (6).

For the vertical rotationm, 9°:= 0, the conditions (8), (7), take the
form

V' (0)=0, (A+ B1—C) Q@ — CoQ —V" (0) <0 )

The inequality (9) will be satisfied when the following inequalities
are satisfied

C0? + 4 (A + B — C) V" (0) >0, Q<R (10)
where (hj (5, are roots of the quadratic equation
(A+By—Cy) Q*— CoQ — V" (0) =0

It can be easily shown that the condition (9) is also the necessary
condition of stability of vertical rotations of a gyroscope. On the
strength of the perturbed equations

W= (A4 A4) né:

the time derivative of the function
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dW
T = A+ A EE+[(A+ Bi— C) @2 — CoQ — V" )] 2 4. ..

is positive-definite when the following inequality is satisfied:
A4+ B —Cp Q2 —CaQ-—-V"(0) >0
The wmotion under consideration is, by Liapunov’s theorem, unstable.

This means that the condition (9) is the necessary and sufficient con-
dition (excluding the boundary) of stability of the vertical rotations
of a gyroscope on gimbals.

For the regular precessions, 90 # 0, we can also obtain the necessary
and sufficiept conditions of stability by using the theorem of Routh.
The changed potential energy of the system is

1 1 (k — Crycos §)2
®(§) =V (0)+ 5 Cré+ T (AT By omih T Creof§ 77 (L)

The investigated stationary motion satisfies the condition

(0D /88)g = 0 (12)

If the constants k, ry are not perturbed,_then, by Routh’s theorem,
the motion (5) is stable with respect to &, 0, if in addition the func-
tion $(9) in the unperturbed motion has 2 minimum, that is

(0D ] 263, >0 (13)
Using (12) we can put the condition (13) in the form

C?w?sin? §,+ [(4 + By)sin? §y + Cyeos? § 4 T} V" {8) — V' (Gojectg 854
(A4 By— C1) Q¥sin? §] -+ 4 (A + By— C9) V' (8) sin By cos >0 (14)

In the above inequality it is essential that sin 6, # 0.

In the case when (8%¢ 802)o < 0 the motion (5) is unstable [6]; con-
sequently the condition (14) is the necessary and sufficient condition
(excluding boundary) of stability of the regular precession of a gyro-
scope on gimbals. The conditions (7), (9), and (14) in the case of a
heavy gyroscope on gimbals with vertical axis of the outer ring (Vo =
a cos 0) reduce to the conditions obtained for similar cases in [2,4].
The necessity of the condition (14) for a gyroscope not on gimbals (A1 =

B1 = C1 = J = 0) has been demonstrated in [s].

The author wishes to thank V.V. Rumiantsev for suggesting to him the
problem,
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